Preparation and Properties of Melamine Urea-Formaldehyde Microcapsules for Self-Healing of Cementitious Materials
نویسندگان
چکیده
Self-healing microcapsules were synthesized by in situ polymerization with a melamine urea-formaldehyde resin shell and an epoxy resin adhesive. The effects of the key factors, i.e., core-wall ratio, reaction temperature, pH and stirring rate, were investigated by characterizing microcapsule morphology, shell thickness, particle size distribution, mechanical properties and chemical nature. Microcapsule healing mechanisms in cement paste were evaluated based on recovery strength and healing microstructure. The results showed that the encapsulation ability, the elasticity modulus and hardness of the capsule increased with an increase of the proportion of shell material. Increased polymerization temperatures were beneficial to the higher degree of shell condensation polymerization, higher resin particles deposition on microcapsule surfaces and enhanced mechanical properties. For relatively low pH values, the less porous three-dimensional structure led to the increased elastic modulus of shell and the more stable chemical structure. Optimized microcapsules were produced at a temperature of 60 °C, a core-wall ratio of 1:1, at pH 2~3 and at a stirring rate of 300~400 r/min. The best strength restoration was observed in the cement paste pre-damaged by 30% fmax and incorporating 4 wt % of capsules.
منابع مشابه
Micromechanical Properties of a New Polymeric Microcapsule for Self-Healing Cementitious Materials
Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol-formaldehyde) (PF) microcapsules that aim to provide a self-healing function for cementitious materials were prepared by an in situ polymerization reaction. Size g...
متن کاملMicroencapsulation of self-healing agents containing a fluorescent dye
Two different self-healing agent candidates, endo-dicyclopentadiene (endo-DCPD) and 5-ethylidene-2-norbornene (ENB), containing a fluorescent dye surrounded by a melamine–urea–formaldehyde (MUF) shell were microencapsulated by in-situ polymerization and the resulting microcapsules were characterized in this work. The microcapsules showed a narrow size distribution with a spherical shape and rou...
متن کاملMicroencapsulation of Butyl Stearate as Phase Change Material by Melamine Formaldehyde Shell for Thermal Energy Storage
Butyl stearate as a phase change material was microencapsulated within melamine-formaldehyde resin using emulsion polymerization. Morphology and thermal specification of produced microcapsules were studied by Fourier transform infrared spectroscopy, FT-IR, scanning electron microscopy, SEM, and Differential scanning calorimetry analysis, DSC. FT-IR spectra validated the existence of the butyl s...
متن کاملExperimental Study on Mechanical Properties and Porosity of Organic Microcapsules Based Self-Healing Cementitious Composite
Encapsulation of healing agents embedded in a material matrix has become one of the major approaches for achieving self-healing function in cementitious materials in recent years. A novel type of microcapsules based self-healing cementitious composite was developed in Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University. In this study, both macro p...
متن کاملDevelopment of Self-Healing Coatings Based on Linseed Oil as Autonomous Repairing Agent for Corrosion Resistance
In recent years corrosion-resistant self-healing coatings have witnessed strong growth and their successful laboratory design and synthesis categorises them in the family of smart/multi-functional materials. Among various approaches for achieving self-healing, microcapsule embedment through the material matrix is the main one for self-healing ability in coatings. The present work focuses on opt...
متن کامل